267 research outputs found

    Population modelling and genetics of a critically endangered Madagascan palm Tahina spectabilis.

    Get PDF
    Madagascar is home to 208 indigenous palm species, almost all of them endemic and >80% of which are endangered. We undertook complete population census and sampling for genetic analysis of a relatively recently discovered giant fan palm, the Critically Endangered Tahina spectablis in 2008 and 2016. Our 2016 study included newly discovered populations and added to our genetic study. We incorporated these new populations into species distribution niche model (SDM) and projected these onto maps of the region. We developed population matrix models based on observed demographic data to model population change and predict the species vulnerability to extinction by undertaking population viability analysis (PVA). We investigated the potential conservation value of reintroduced planted populations within the species potential suitable habitat. We found that the population studied in 2008 had grown in size due to seedling regeneration but had declined in the number of reproductively mature plants, and we were able to estimate that the species reproduces and dies after approximately 70 years. Our models suggest that if the habitat where it resides continues to be protected the species is unlikely to go extinct due to inherent population decline and that it will likely experience significant population growth after approximately 80 years due to the reproductive and life cycle attributes of the species. The newly discovered populations contain more genetic diversity than the first discovered southern population which is genetically depauperate. The species appears to demonstrate a pattern of dispersal leading to isolated founder plants which may eventually lead to population development depending on local establishment opportunities. The conservation efforts currently put in place including the reintroduction of plants within the species potential suitable habitat if maintained are thought likely to enable the species to sustain itself but it remains vulnerable to anthropogenic impacts

    CONQUEST Quality Standards : For the Collaboration on Quality Improvement Initiative for Achieving Excellence in Standards of COPD Care

    Get PDF
    Acknowledgments We thank Dr Seyi Soremekun, Jonathan Marshall, Jennie Medin and Irena Brookes-Smith for their valuable contributions to the design of the study. We would also like to acknowledge Ms Andrea Teh Xin Yi (BSc, Hons) of the Observational and Pragmatic Research Institute (OPRI), Singapore, for editorial and formatting assistance which supported the development of this publication. Professor Dave Singh is supported by the National Institute for Health Research (NIHR) Manchester Biomedical Research Centre (BRC). Funding CONQUEST is conducted by Optimum Patient Care Global and Observational and Pragmatic Research Institute and is co-funded by Optimum Patient Care Global and AstraZenecaPeer reviewedPublisher PD

    Long-acting inhaled therapy (beta-agonists, anticholinergics and steroids) for COPD: a network meta-analysis.

    Get PDF
    BACKGROUND: Pharmacological therapy for chronic obstructive pulmonary disease (COPD) is aimed at relieving symptoms, improving quality of life and preventing or treating exacerbations.Treatment tends to begin with one inhaler, and additional therapies are introduced as necessary. For persistent or worsening symptoms, long-acting inhaled therapies taken once or twice daily are preferred over short-acting inhalers. Several Cochrane reviews have looked at the risks and benefits of specific long-acting inhaled therapies compared with placebo or other treatments. However for patients and clinicians, it is important to understand the merits of these treatments relative to each other, and whether a particular class of inhaled therapies is more beneficial than the others. OBJECTIVES: To assess the efficacy of treatment options for patients whose chronic obstructive pulmonary disease cannot be controlled by short-acting therapies alone. The review will not look at combination therapies usually considered later in the course of the disease.As part of this network meta-analysis, we will address the following issues.1. How does long-term efficacy compare between different pharmacological treatments for COPD?2. Are there limitations in the current evidence base that may compromise the conclusions drawn by this network meta-analysis? If so, what are the implications for future research? SEARCH METHODS: We identified randomised controlled trials (RCTs) in existing Cochrane reviews by searching the Cochrane Database of Systematic Reviews (CDSR). In addition, we ran a comprehensive citation search on the Cochrane Airways Group Register of trials (CAGR) and checked manufacturer websites and reference lists of other reviews. The most recent searches were conducted in September 2013. SELECTION CRITERIA: We included parallel-group RCTs of at least 6 months' duration recruiting people with COPD. Studies were included if they compared any of the following treatments versus any other: long-acting beta2-agonists (LABAs; formoterol, indacaterol, salmeterol); long-acting muscarinic antagonists (LAMAs; aclidinium, glycopyrronium, tiotropium); inhaled corticosteroids (ICSs; budesonide, fluticasone, mometasone); combination long-acting beta2-agonist (LABA) and inhaled corticosteroid (LABA/ICS) (formoterol/budesonide, formoterol/mometasone, salmeterol/fluticasone); and placebo. DATA COLLECTION AND ANALYSIS: We conducted a network meta-analysis using Markov chain Monte Carlo methods for two efficacy outcomes: St George's Respiratory Questionnaire (SGRQ) total score and trough forced expiratory volume in one second (FEV1). We modelled the relative effectiveness of any two treatments as a function of each treatment relative to the reference treatment (placebo). We assumed that treatment effects were similar within treatment classes (LAMA, LABA, ICS, LABA/ICS). We present estimates of class effects, variability between treatments within each class and individual treatment effects compared with every other.To justify the analyses, we assessed the trials for clinical and methodological transitivity across comparisons. We tested the robustness of our analyses by performing sensitivity analyses for lack of blinding and by considering six- and 12-month data separately. MAIN RESULTS: We identified 71 RCTs randomly assigning 73,062 people with COPD to 184 treatment arms of interest. Trials were similar with regards to methodology, inclusion and exclusion criteria and key baseline characteristics. Participants were more often male, aged in their mid sixties, with FEV1 predicted normal between 40% and 50% and with substantial smoking histories (40+ pack-years). The risk of bias was generally low, although missing information made it hard to judge risk of selection bias and selective outcome reporting. Fixed effects were used for SGRQ analyses, and random effects for Trough FEV1 analyses, based on model fit statistics and deviance information criteria (DIC). SGRQ SGRQ data were available in 42 studies (n = 54,613). At six months, 39 pairwise comparisons were made between 18 treatments in 25 studies (n = 27,024). Combination LABA/ICS was the highest ranked intervention, with a mean improvement over placebo of -3.89 units at six months (95% credible interval (CrI) -4.70 to -2.97) and -3.60 at 12 months (95% CrI -4.63 to -2.34). LAMAs and LABAs were ranked second and third at six months, with mean differences of -2.63 (95% CrI -3.53 to -1.97) and -2.29 (95% CrI -3.18 to -1.53), respectively. Inhaled corticosteroids were ranked fourth (MD -2.00, 95% CrI -3.06 to -0.87). Class differences between LABA, LAMA and ICS were less prominent at 12 months. Indacaterol and aclidinium were ranked somewhat higher than other members of their classes, and formoterol 12 mcg, budesonide 400 mcg and formoterol/mometasone combination were ranked lower within their classes. There was considerable overlap in credible intervals and rankings for both classes and individual treatments. Trough FEV1 Trough FEV1 data were available in 46 studies (n = 47,409). At six months, 41 pairwise comparisons were made between 20 treatments in 31 studies (n = 29,271). As for SGRQ, combination LABA/ICS was the highest ranked class, with a mean improvement over placebo of 133.3 mL at six months (95% CrI 100.6 to 164.0) and slightly less at 12 months (mean difference (MD) 100, 95% CrI 55.5 to 140.1). LAMAs (MD 103.5, 95% CrI 81.8 to 124.9) and LABAs (MD 99.4, 95% CrI 72.0 to 127.8) showed roughly equivalent results at six months, and ICSs were the fourth ranked class (MD 65.4, 95% CrI 33.1 to 96.9). As with SGRQ, initial differences between classes were not so prominent at 12 months. Indacaterol and salmeterol/fluticasone were ranked slightly better than others in their class, and formoterol 12, aclidinium, budesonide and formoterol/budesonide combination were ranked lower within their classes. All credible intervals for individual rankings were wide. AUTHORS' CONCLUSIONS: This network meta-analysis compares four different classes of long-acting inhalers for people with COPD who need more than short-acting bronchodilators. Quality of life and lung function were improved most on combination inhalers (LABA and ICS) and least on ICS alone at 6 and at 12 months. Overall LAMA and LABA inhalers had similar effects, particularly at 12 months. The network has demonstrated the benefit of ICS when added to LABA for these outcomes in participants who largely had an FEV1 that was less than 50% predicted, but the additional expense of combination inhalers and any potential for increased adverse events (which has been established by other reviews) require consideration. Our findings are in keeping with current National Institute for Health and Care Excellence (NICE) guidelines

    Oxygen levels determine the ability of glucocorticoids to influence neutrophil survival in inflammatory environments

    Get PDF
    GCs are highly effective in treating a wide range of inflammatory diseases but are limited in their ability to control neutrophilic lung inflammation in conditions such as COPD. Neutrophil apoptosis, a central feature of inflammation resolution, is delayed in response to microenvironmental cues, such as hypoxia and inflammatory cytokines, present at inflamed sites. GCs delay neutrophil apoptosis in vitro, and this may therefore limit the ability of GCs to control neutrophilic inflammation. This study assesses the effect GCs have on hypoxia- and inflammatory cytokine-induced neutrophil survival. Human neutrophils were treated with GCs in the presence or absence of GM-CSF or inflammatory macrophage-CM at a range of oxygen concentrations (21–1% oxygen). Neutrophil apoptosis and survival were assessed by flow cytometry and morphological analysis and neutrophil function, by stimulus-induced shape change and respiratory burst. Dexamethasone promoted neutrophil survival at 21%, 10%, and 5% oxygen but not at 1% oxygen. Interestingly, GM-CSF and inflammatory CM increased neutrophil survival significantly, even at 1% oxygen, with cells remaining functionally active at 96 h. Dexamethasone was able to reduce the prosurvival effect of GM-CSF and inflammatory CM in a hypoxic environment. In conclusion, we found that GCs do not augment neutrophil survival in the presence of severe hypoxia or proinflammatory mediators. This suggests that GCs would not promote neutrophil survival at sites of inflammation under these conditions

    Optimal strategies for controlling riverine tsetse flies using targets: a modelling study

    Get PDF
    Background: Tsetse flies occur in much of sub-Saharan Africa where they transmit the trypanosomes that cause the diseases of sleeping sickness in humans and nagana in livestock. One of the most economical and effective methods of tsetse control is the use of insecticide-treated screens, called targets, that simulate hosts. Targets have been ~1m2, but recently it was shown that those tsetse that occupy riverine situations, and which are the main vectors of sleeping sickness, respond well to targets only ~0.06m2. The cheapness of these tiny targets suggests the need to reconsider what intensity and duration of target deployments comprise the most cost-effective strategy in various riverine habitats. Methodology/Principal Findings: A deterministic model, written in Excel spreadsheets and managed by Visual Basic for Applications, simulated the births, deaths and movement of tsetse confined to a strip of riverine vegetation composed of segments of habitat in which the tsetse population was either selfsustaining, or not sustainable unless supplemented by immigrants. Results suggested that in many situations the use of tiny targets at high density for just a few months per year would be the most cost-effective strategy for rapidly reducing tsetse densities by the ~90% expected to have a great impact on the incidence of sleeping sickness. Local elimination of tsetse becomes feasible when targets are deployed in isolated situations, or where the only invasion occurs from populations that are not self-sustaining. Conclusion/Significance: Seasonal use of tiny targets deserves field trials. The ability to recognise habitat that contains tsetse populations which are not self-sustaining could improve the planning of all methods of tsetse control, against any species, in riverine, savannah or forest situations. Criteria to assist such recognition are suggested

    Association of FcγRIIa R131H polymorphism with idiopathic pulmonary fibrosis severity and progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A significant genetic component has been described for idiopathic pulmonary fibrosis (IPF). The R131H (rs1801274) polymorphism of the IgG receptor FcγRIIa determines receptor affinity for IgG subclasses and is associated with several chronic inflammatory diseases. We investigated whether this polymorphism is associated with IPF susceptibility or progression.</p> <p>Methods</p> <p>In a case-control study, we compared the distribution of FcγRIIa R131H genotypes in 142 patients with IPF and in 218 controls using allele-specific PCR amplification.</p> <p>Results</p> <p>No differences in the frequency of FcγRIIa genotypes were evident between IPF patients and control subjects. However, significantly impaired pulmonary function at diagnosis was observed in HH compared to RR homozygotes, with evidence of more severe restriction (reduced forced vital capacity (FVC)) and lower diffusing capacity for carbon monoxide (D<smcaps>L</smcaps><sub>CO</sub>). Similarly, increased frequency of the H131 allele was observed in patients with severe disease (D<smcaps>L</smcaps><sub>CO </sub>< 40% predicted) (0.53 vs. 0.38; p = 0.03). Furthermore, the H131 allele was associated with progressive pulmonary fibrosis as determined by > 10% drop in FVC and/or > 15% fall in D<smcaps>L</smcaps><sub>CO </sub>at 12 months after baseline (0.48 vs. 0.33; p = 0.023).</p> <p>Conclusions</p> <p>These findings support an association between the FcγRIIa R131H polymorphism and IPF severity and progression, supporting the involvement of immunological mechanisms in IPF pathogenesis.</p

    Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD

    Get PDF
    Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group

    Technical advance: autofluorescence-based sorting: rapid and nonperturbing isolation of ultrapure neutrophils to determine cytokine production

    Get PDF
    The technical limitations of isolating neutrophils without contaminating leukocytes, while concurrently minimizing neutrophil activation, is a barrier to determining specific neutrophil functions. We aimed to assess the use of FACS for generating highly pure quiescent neutrophil populations in an antibody-free environment. Peripheral blood human granulocytes and murine bone marrow-derived neutrophils were isolated by discontinuous Percoll gradient and flow-sorted using FSC/SSC profiles and differences in autofluorescence. Postsort purity was assessed by morphological analysis and flow cytometry. Neutrophil activation was measured in unstimulated-unsorted and sorted cells and in response to fMLF, LTB(4), and PAF by measuring shape change, CD62L, and CD11b expression; intracellular calcium flux; and chemotaxis. Cytokine production by human neutrophils was also determined. Postsort human neutrophil purity was 99.95% (sem=0.03; n=11; morphological analysis), and 99.68% were CD16(+ve) (sem=0.06; n=11), with similar results achieved for murine neutrophils. Flow sorting did not alter neutrophil activation or chemotaxis, relative to presorted cells, and no differences in response to agonists were observed. Stimulated neutrophils produced IL-1β, although to a lesser degree than CXCL8/IL-8. The exploitation of the difference in autofluorescence between neutrophils and eosinophils by FACS is a quick and effective method for generating highly purified populations for subsequent in vitro study

    Pulmonary Arterial Enlargement and Acute Exacerbations of COPD

    Get PDF
    BACKGROUND: Exacerbations of chronic obstructive pulmonary disease (COPD) are associated with accelerated loss of lung function and death. Identification of patients at risk for these events, particularly those requiring hospitalization, is of major importance. Severe pulmonary hypertension is an important complication of advanced COPD and predicts acute exacerbations, though pulmonary vascular abnormalities also occur early in the course of the disease. We hypothesized that a computed tomographic (CT) metric of pulmonary vascular disease (pulmonary artery enlargement, as determined by a ratio of the diameter of the pulmonary artery to the diameter of the aorta [PA:A ratio] of >1) would be associated with severe COPD exacerbations. METHODS: We conducted a multicenter, observational trial that enrolled current and former smokers with COPD. We determined the association between a PA:A ratio of more than 1 and a history at enrollment of severe exacerbations requiring hospitalization and then examined the usefulness of the ratio as a predictor of these events in a longitudinal follow-up of this cohort, as well as in an external validation cohort. We used logistic-regression and zero-inflated negative binomial regression analyses and adjusted for known risk factors for exacerbation. RESULTS: Multivariate logistic-regression analysis showed a significant association between a PA:A ratio of more than 1 and a history of severe exacerbations at the time of enrollment in the trial (odds ratio, 4.78; 95% confidence interval [CI], 3.43 to 6.65; P1), as detected by CT, was associated with severe exacerbations of COPD. (Funded by the National Heart, Lung, and Blood Institute; ClinicalTrials.gov numbers, NCT00608764 and NCT00292552.)
    • …
    corecore